排序算法(详解)
正在完善!
冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
1.2 动图演示
选择排序
在长度为N的无序数组中,第一次遍历n-1个数,找到最小的数值与第一个元素交换;
第二次遍历n-2个数,找到最小的数值与第二个元素交换;
。。。
第n-1次遍历,找到最小的数值与第n-1个元素交换,排序完成。
插入排序
在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
希尔排序
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
原理是通过引入一个增量序列,采取分组排序策略,将大数组分为若干个子序列,对每个子序列进行插入排序。随着增量逐渐减小,子序列变得更小,最终达到增量为1,整个数组变成一个有序序列,完成排序。
希尔排序(Shell Sort)是一种改进的插入排序算法,由D.L.Shell于1959年提出。它的基本思想是将待排序的序列分割成若干个子序列,分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。这种排序方法通过引入间隔序列(增量),使得排序过程在开始阶段就能够更好地利用局部有序性,从而提高效率。
希尔排序的主要动机是观察到插入排序在处理小规模数据时的高效性。然而,对于大规模数据,插入排序需要进行大量的元素交换,尤其是在数据分布不均时。希尔排序通过分组和调整步长,减少了排序过程中的比较和交换次数。它能够利用插入排序对于部分有序数据的良好性能,同时通过分组和调整步长,减少了不必要的比较与交换。
希尔排序的预排序阶段通过插入排序让序列接近有序,这一过程称为预排序。然后,随着增量的逐渐减小,子序列变得更小,最终达到增量为1,整个数组变成一个有序序列。这种排序方式使得希尔排序在初始阶段,使用较大的步长让序列更快时间的接近有序,并且减少了不必要的比较与交换。
简单插入排序很循规蹈矩,不管数组分布是怎么样的,依然一步一步的对元素进行比较,移动,插入,比如[5,4,3,2,1,0]这种倒序序列,数组末端的0要回到首位置很是费劲,比较和移动元素均需n-1次。而希尔排序在数组中采用跳跃式分组的策略,通过某个增量将数组元素划分为若干组,然后分组进行插入排序,随后逐步缩小增量,继续按组进行插入排序操作,直至增量为1。希尔排序通过这种策略使得整个数组在初始阶段达到从宏观上看基本有序,小的基本在前,大的基本在后。然后缩小增量,到增量为1时,其实多数情况下只需微调即可,不会涉及过多的数据移动。
我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2...1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。
图解如下:
动图如下:
堆排序
堆排序是指利用堆这种数据结构所设计的一种选择排序算法。堆是一种近似完全二叉树的结构(通常堆是通过一维数组来实现的),并满足性质:以最大堆(也叫大根堆、大顶堆)为例,其中父结点的值总是大于它的孩子节点。
我们可以很容易的定义堆排序的过程:
- 由输入的无序数组构造一个最大堆,作为初始的无序区
- 把堆顶元素(最大值)和堆尾元素互换
- 把堆(无序区)的尺寸缩小1,并调用heapify(A, 0)从新的堆顶元素开始进行堆调整
- 重复步骤2,直到堆的尺寸为1
归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
首先考虑下如何将2个有序数列合并。这个非常简单,只要从比较2个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个元素要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:
- 从序列中挑出一个元素,作为"基准"(pivot).
- 把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
- 对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。